Solar Energy Technologies Program Peer Review

NREL Film Silicon Agreement

PV Program Team

P.I. Howard M. Branz

National Renewable Energy Laboratory 1617 Cole Blvd, Golden, CO 80401 howard.branz@nrel.gov May 26, 2010

This presentation does not contain any proprietary or confidential information.

Overview: Film Silicon Ageement

Timeline

- Review period of 14 months:
 March 2009 April 2010
- Funded project end: Sept 30, 2010
- ~ 75% complete

Budget

- Total project funding in review
 - DOE: \$3862k for 14 months
- Total FY09 Funds: \$3225k
- Total FY10 Funds: \$3395k

Barriers

- High cost of wafers in dominant silicon PV technology
- Low efficiency of thin-film PV
- Non-Si PV may face shortages and high prices of key elements (e.g. Te, In, Ga) at TW penetration

Partners

- Project lead: NREL
- Key collaborations
 - Ampulse
 - Corning
 - Sharp Laboratories of America
 - Uni-Solar
 - Xunlight
 - Other industry (proprietary)
 - Oak Ridge National Laboratory
 - Stanford University
 - Columbia University

Challenges, Barriers or Problems

- The PV challenge: TW-scale deployment
 - Requires abundant, non-toxic materials
 - Requires high-quality materials on low-cost substrates
 - Requires 50 to 80 cents/W module cost
 - Efficiency of crystal-Si (15%) at thin-film manufacturing costs (<\$100/m²)
- The advantages of silicon
 - Abundant, non-toxic, well-understood, semiconductor
 - Industrial equipment from PV, IC and a-Si TFT industries
- The key mid-term technical challenge for silicon PV
 - Eliminate the Si Wafer
 - Wafer is ½ the Si module cost today, despite feedstock cost reductions
 - Embedded energy content repaid only after 2-year deployment

Relevance: Si wafers must be replaced in PV

Expensive & energy-intensive wafer production

Film Si decreases materials and energy costs

Relevance: With light-trapping, c-Si film can provide needed current for 15% cells

- CSG (Q-Cells) mini-modules: J_{sc}=29.3 mA/cm² from 1.85 μm thick c-Si
 - Poor quality, 1-micron grain, recrystallized Si limits efficiency
- Near-term goal: 30 mA/cm² from 4-μm c-Si
 - 5X light trapping

Overview of Film Silicon Agreement

Near-term: thin-film a-Si/nc-Si

 Task: Improve high depositionrate nc-Si

Goal: increase efficiency and lower capital costs

Objectives and key tasks FY09 – FY10

- Address most critical needs for >15%-efficient mid-term film crystal silicon
 - Improve high-rate, scalable, hot-wire CVD epitaxy at glass-compatible temperatures
 - Improve rapid thermal anneal and hydrogen passivation
 - Test epitaxy on most promising crystalline seeds on inexpensive substrates
 - Design and fabricate test solar cells to validate epitaxial Si quality
 - PC1D and analytic models of devices to understand limiting physics
 - Plan light-trapping task to begin in FY11
 - Establish firm scientific knowledge for all technologies required
- High-rate nanocrystalline Si for near-term PV use
 - High efficiency hot-wire and VHF CVD a-Si:H and nc-Si devices on 6-inch substrates from PDIL tool
 - Support of U.S. industry
 - Collaborative research with established and startup U.S. companies in film Si PV and new substrates
 - Provide amorphous silicon films to university groups for novel nanostructured, plasmonic and other devices
- All research tasks support goals of DOE Film Silicon Roadmap
 - Key "Technical Improvement Opportunities" for materials and device development addressed
 - Manufacturing equipment and scale left to industrial partners

10.5% PECVD thin-film a-Si:H cell in 6-inch PDIL cluster tool

- Establishes quality for 6-inch industrial collaborations
- Key advance is p⁺/p⁻ double layer

10.5% on 0.25 cm² cell:

Q. Wang et al, in preparation

p⁺/p⁻ -layer optimization

NREL Hot-Wire CVD epitaxy at high rate

- Decomposition to Si, H at wire
 - React Si + SiH₄ ---> Si₂H₂ +H₂
 - Si₂H₂ deposition radical

Zheng & Gallagher, TSF 2008

- Real-time spectroscopic ellipsometry
 - Layer-by-layer monitoring of crystallinity, thickness & roughness
 Teplin et al, JAP 2005
- Contolled n- and p-type doping

Martin et al, TSF 2008

- Demonstrated 40-micron epitaxy
- High-rate 300 nm/min epitaxy
 - Can grow 3 micron PV absorber in 10 minutes
 - Increased wire area needed for micron per minute rate

Martin et al, JAP 2010

Mapped deposition phase space for thick HWCVD epitaxy

Epitaxy requires unhydrogenated surface sites

- Curves separate fully mono-hydride surface from surface with DBs
- Steady-state balance between H arrival and desorption

Low defect density HWCVD epitaxy

- Developed reliable methods of defect density counting
 - E-beam cathodoluminescence and EBIC of recombination-active defects
 - Low dislocation density confirmed at small areas by TEM
- Example: 10-micron thick solar cell with < 6 x 10⁴ cm⁻² defects

SEM

30 µm

E-beam induced current (EBIC)

• 40-μm spacing between defects excellent for ~6 μm-thick absorber layer

Epitaxial quality supports V_{oc} of 568 mV

• Silicon heterojunction test devices on 'dead' wafer (wafer provides ~1 mA/cm²)

- 6.3% efficiency with no light trapping, RTA or hydrogenation
- Dislocation density controls V_{oc}

Alberi et al. APL, 2009

Analysis of test cells & PC1D models

- IQE & dislocation measurements reveal quality requirement:
 - unpassivated dislocation spacing 6 times absorber thickness

Impurities: Film c-Si is far more tolerant than wafer

Alberi et al, APL 2010

Diffusion-limited cell (random walk) physics

Diffusion length, L:

$$\tau \sim \frac{1}{N} \qquad L \sim (D\tau)^{1/2} \sim N^{-1/2}$$

Max impurity level vs thickness, d

$$L > 3d \longrightarrow N_{\text{max}} \sim \frac{1}{(3d)^2}$$

Impurity tolerance, N_{max}

$$\frac{N_{\text{max}}(3\mu\text{m})}{N_{\text{max}}(300\mu\text{m})} \sim \frac{300^2}{3^2} \sim 10^4$$

Example: Ni tolerance in c-Si

Davis et al., IEEE Trans. Electron Devices, 1980

Dislocations are caused by O at surface and can be controlled

- T-dependence of dislocation density matches suboxide desorption E_{act}
- SIMS shows dislocation correlation with interface oxygen

- We are perfecting surface-oxygen reduction methods
 - Already reduced dislocation density to 6x10⁴ cm⁻² (> 45-μm spacing)
 Martin et al. APL, in preparation

Seed layers initiate high-quality crystal growth

- Important seed layer properties
 - Large crystalline grains
 - Grains oriented coherently
 - (100) preferred
 - Low-angle grain boundaries
 - In-plane orientation of grains
 - If foreign, compatible with Si epitaxy
 - Few intragrain defects

NREL seed layer project: Sub-threshold laser pretreat array

Dabney et al. APL, 2009

- Laser-pretreat amorphous silicon with sparse array of nucleation centers
 - Below threshhold for producing deleterious multicrystalline spots

 FY09: Discovered laser treatment regime which speeds nucleation by factor of 7X

Next: Pretreat with sub-threshhold spot array to obtain large grains

External collaborations for seed layers

Partner	Туре	Seed	Si epi?	PV cell
ORNL/Ampulse	Nat. Lab /Startup	Biaxial foreign on metal foil	Yes	Yes
Corning	Industry	Layer Transfer	Yes	Yes
Sharp	Industry	Layer Transfer	Yes	Yes
3 different partners	Industry	Proprietary	Yes (on first 1 of 3)	
Stanford	University	Biaxial foreign on glass	Awaiting suitable sample	
Columbia	University	Uniaxial laser Si on glass	In progress	

Electron back-scattered diffraction (EBSD) van der Wilt et al, MRS Spring A, 2008

463 mV solar cell on display glass

Late news: Proof-of-concept epitaxial solar cell

- Layer transfer Si seed on \$26/m² Eagle glass + NREL HWCVD epitaxy
- 4.8% efficient without hydrogenation, RTP or light-trapping

Voltage (V)
Collaboration with E. Mozdy and T.K. Chuang, Corning

Future Plans

- Implement improved low- defect density epitaxy in PV cells on glass
 - Raise layer-transfer 'ideal seed' voltage to > 600 mV
 - Validate PC1D models with thickness series
 - Apply wider range of RTP and hydrogenation conditions
- Evaluate quality of epitaxy and PV cells on newly-acquired seeds
 - Foreign templates
 - Laser-crystallized seeds
 - Proprietary industry seeds
- Down-select by September the least promising of NREL's 3 seed layer approaches
 - elimination of microwave anneal task is likely
- Planned FY11 Agreement changes
 - Epitaxy at high quality at higher rate and lower temperature
 - Continue developing only the most promising of NREL seed layers
 - Initiate formal light-trapping task to accelerate work and raise current density
 - Initiate exploratory task for proprietary alternate approach to wafer replacement
- FY13 goal is 15% cell on glass or metal foil
 - Challenge is to develop and integrate several unproven but critical technologies

Summary

- Film silicon: Wafer silicon efficiency in a thin-film cost structure
 - Avoids high \$\$ and energy costs of wafers
 - Abundant, non-toxic silicon for TW-scale PV

- > 15% achievable in 2-10 micron c-Si films
 - Seed layer & epitaxy for good crystal quality
 - Need spacing between dislocations at least 6 times thickness
- HW epitaxy on c-Si at display-glass-compatible T
 - 40-μm defect spacing (6 x 10⁴ cm⁻² dislocations)
 - Scalable 300 nm/min with path to micron per minute
- Proof-of-concept HWCVD epitaxial solar cells designed, fabricated, measured and modeled
 - On (dead) wafer with 568 mV
 - On display glass with 463 mV
- All the key barriers identified and can be surmounted
 - better epitaxy at higher rates, less expensive seeds, improved contacting, and good light-trapping

NREL Participants – Thank you

- Kirstin Alberi
- Carolyn Beall
- Joe Berry
- Matt Dabney
- Anna Duda
- Harvey Guthrie
- Falah Hasoon
- Kim Jones
- Eugene Iwaniczko
- Harv Mahan

- Ina Martin
- Bill Nemeth
- Bob Reedy
- Manuel Romero
- Maxim Shub
- Paul Stradins
- Charles Teplin
- Qi Wang
- Yueqin Xu
- David Young